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Abstract

Ransomware - a subcategory of malware - is a malicious software and a class of self

propagating malware, whose specific goal is to hold victim’s data by using encryp-

tion techniques, until a ransom is being paid. With the proliferation of internet and

computers in any domain, Windows based ransomware is now becoming a great

threat that emerging drastically with the passage of time. It installed on a victim’s

device without the knowledge of the owner and perform malicious activities such

as stealing personal information, encrypt data, lock the machine, makes the data

inaccessible to the user and demands a ransom amount to be paid in the form of

bitcoin or other forms of untraceable currency. With the rise of new malware cat-

egories, it has now become difficult to differentiate between an ordinary malware

and a ransomware. Therefore, it is essential to analyze the behaviour of ran-

somware samples to know their malicious nature that differs from other malwares.

There are two ways to analyze ransomware. The first type is to analyze statically,

which means analyzing the code without executing. The second type is to analyze

dynamically, which means observing the behaviour of ransomware by actually ex-

ecuting the application. In most cases, static analysis is not sufficient enough to

identify the malicious behaviour between ransomwares and non-ransomware. Due

to the shortcoming of static analysis, we proposed two hybrid approaches which

is a combination of static analysis, dynamic analysis, and performance counters

to classify and detect ransomware using machine learning methods. The machine

learning analyzer is used to train both static and dynamic features using different

families of ransomware and non-ransomware applications. Our experiment results

show that the proposed ransomware classification and detection mechanism is able

to classify and detect unknown ransomware that exhibits similar static or dynamic

behaviour. Moreover, we find that data from performance counters can be used

to classify and identify ransomware.
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Chapter 1

INTRODUCTION

With the increasing number of devices such as laptops and cell phones, the cyber-

attacks are emerging drastically that leads the researcher to raise many security

questions. Malware stands for malicious software (that used to perform harmful

activities), which is installed in users system without his/her knowledge. Mal-

ware comes in many forms such as viruses, trojans, worms, and ransomware, etc.

Recently a specific form of malware known as ransomware (RW) being the most

dangerous malicious software among all. Ransomware is known to be scareware,

which is a type of malware that can be a used as a tool for blackmailing user

via secretly infecting victims device and later demands a ransom payout in order

to decrypt files. Recently, Windows ransomware have become a great threat to

the computer and smart device users. Ransomware can be referred as scarewares,

which are coded in a way to frighten victims and convince them to quickly pur-

chase the software. A ransomware encrypts the data of infected machines, and

asks the user to pay a ransom usually, in Bitcoins [1] to regain full access to the

attached system. Many victims pay ransom in order to save their important data

for which they do not have any backup.

Ransomware are not only affecting businesses, individuals but public economy ex-

ponentially as well as private companys assets [2]. A recent trendy example of 2017

year about WannaCry ransomware attack, where more than 300,000 computer de-

vices were affected in 150+ countries and ransom demands were rendered, which

1



Introduction 2

indicates that these predictions might be beaten in the coming year [3]. Another

example is CryptoWall version-3 [4, 5], which caused an estimated $325 million

damage in the US alone during the period from November 2015 to June 2016.

CryptoWall version 4 reached up to $7.1 million damage globally [4]. Considering

Sony ransomware attack [6] that even took US government attention which claims

that North Korea was responsible for the damage [7]. In 2016 and 2017, similar

ransomware attacks were increasing gradually from the last couple of years. Such

type of ransomware makes headlines day-by-day via extracting large amounts from

victims ranging from $10,000 to restore a public school districts records to $17,000

to restore patient records at a hospital [8] to $24 million in the year of 2015. The

FBI reported in 2016 that the ransomware cost within the 03 months of 2016 in

United States growing onwards to an estimated $209 million.

Ransomware usually pass through three phases 1) finding a target to victimize; 2)

preventing access to local information; and then 3) displaying some scary or ran-

som message to get amount from users. According to [5], there are two basic types

of ransomware available today, (a) locker-ransomware and, (b) crypto-ransomware.

Locker-ransomware family is used to lock the victims machine and ultimately pre-

vent the user from using it. Whereas, the crypto-ransomware, seems most common

now-a-days, encrypts personal files to make them inaccessible to its victim. Ran-

somware attacks have been reported on both the desktop and mobile platforms.

Although the mobile ransomware attacks are not that common as compare to

desktop ransomware. For the reason that users are more concerned with their

data placed on desktop systems than mobiles. For example, the desktop Trojan

Kenzero [9] not only steals the users browser-history and also publishes it publicly

on the Internet along with the persons name. It typically demands 1500 yen to

take down the victims browser history [10]. There have not yet been any mobile

malware that seriously threatens or publicly embarrasses the user for profit except

for one piece of mobile ransomware that demanded a ransom e.g., a Dutch worm

[11] locks iPhone screens and later demands 5 euros to unlock the screens of the

infected phone [10, 11]. There might be a behavior difference among users that



Introduction 3

makes one platform a more valuable ransom target than the other. Screenshot of

Windows ransomware is shown in 1.1.

Windows malware are found to be a great threat throughout years, however, ran-

somware being the most severe threat among all due to its attacking and demand-

ing nature (i.e., demands ransom in return). Therefore, ransomware classification

from other malware is now become mandatory because of its harmful and de-

manding nature, which affects financially and economically by damaging hospitals,

police, and schools record drastically. This work is based on a machine learning

approach to classify and differentiate actual ransomware from non-ransomware

(NRW) i.e., an ordinary malware, which is not that threatening as ransomware.

Figure 1.1: Screenshot of Windows Ransomware Attack

We propose to use a hybrid classification method consists of a static and dynamic

method. Static method which is used for analyzing an applications malicious

activities via code without viewing the actual instructions i.e., without execution,

and a dynamic analysis starts by actually executing the specific application. Static

methods are used to classify ransomware behavior by observing some features e.g.,

strings, information get through PEview and exploring list of DLLs functions that

imported by a piece of malware [12]. Dynamic methods, the second step of our

work performed after basic static analysis, considered those features that can only

be obtained after executing malware to get the behavior of applications (memory,
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CPU, cache-misses, branches, instructions, statistics on API calls, file monitoring

operations, registry keys and some other hardware performance counters). Static

approaches are less computationally intense than dynamic methods but they are

typically less effective in detecting ransomware [7, 13]. Whereas, dynamic analysis

are effective in classifying and detecting new malwares. Thus outperforming static

techniques, however, dynamic analysis need applications to be in execution mode

thus, potentially infecting the device [13]. The motivation behind implementing a

hybrid approach is to get the advantages of both static and dynamic techniques

by minimizing their disadvantages.

Keeping this in mind, the main contributions of this thesis are as follows:

1. Design and Evaluating - hybrid approach - based on static features (strings,

and DLL files) and dynamic features (file system monitoring operations,

hardware performance counters, API calls and registry keys) in classifying

windows ransomware in section 3.1;

2. Design and Evaluating - hybrid (combined vs hierarchy-based) approach in

Section 3.2.

1.1 PURPOSE

The purpose of this study is to look deeper into Windows-based features and

provide a new way to classify ransomware. This thesis helps in providing a frame-

work for effective ransomware classification and detection. This framework will be

a stepping stone for Antivirus (AV) vendors and malware experts to take these

features into an account that have been neglected so far to develop and improve

new ransomware detection tools and antiviruses. We proposed a hybrid machine-

learning based ransomware classification and detection technique that utilizes sev-

eral static and dynamic features to increase ransomware detection rate for the

Windows platform.
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1.2 PROBLEM STATEMENT

A lot of solutions have been developed against malware and ransomware that sig-

nificantly improved the users security. Previous researches [2, 5, 7, 14–18] has

shown that there is a lack of behavioral analysis that use hybrid technique to clas-

sify among ransomware and non-ransomwares collectively using these features i.e.,

API Calls, File operations, Registry keys, and Hardware performance counters

(processor usage, cache-misses, memory usage, page faults, instructions, branches

etc.). Whereas hardware performance counters were analyzed on malware and be-

nign apps in [17] but authors have not considered it for ransomware classification.

Classification of ransomware has not been done previously, taking combination of

these multiple features into consideration, which might give us accurate results for

classification and detection. These aspects need to be considered:

a. Hardware performance counters such as cache-misses, branches, branch-misses,

CPUs utilized, task clocks, cycles, context-switching, CPU migrations, instruction

per cycles, and page faults are not observed previously for classification of ran-

somware.

b. Classification of malware into RW or NRW never been done collectively using

these features.

i. File Operations;

ii. API Calls;

iii. Registry Activities;

iv. Performance Counters (disk resources).

1.3 RESEARCH QUESTIONS

The problem discussed in section 1.2 has led us to explore the answers for the

following questions:

Research Questions:
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1. How to classify known and zero-day malicious apps using hybrid approach

into two categories RW or NRW?

2. Which of the static and dynamic features play a vital role in the detection

of ransomware from malicious app?

3. Which of the hardware performance counters are more useful for the detec-

tion of ransomware?

4. Which classifier plays a role in detecting and classifying ransomware?

5. How malicious application classification rate can be improved by employing

two different hybrid frameworks?

1.4 PROPOSED SOLUTION

This thesis proposes two different hybrid techniques that combine the features

from both static and dynamic approaches to classify Windows-based ransomware

from non-ransomware (i.e., other malicious applications) using single analyzer in

one approach and two analyzers in another approach. In this proposed security

mechanism, fingerprinting technique is conducted to analyze the malicious behav-

ior of applications statically. File operations, API Calls, registry activities and

hardware performance counters are observed during the dynamic testing to ob-

serve the runtime behavior of applications. This approach covers the static as well

as the dynamic behavior of the applications considering the combination of static

analysis and other dynamic features along with Hardware Performance Counter

of Windows-based applications that have not been considered in this combination

previously.

1.5 SIGNIFICANCE OF THE SOLUTION

The utmost line of defense against ransomware are antivirus products that rec-

ognize attacks using the hashing-based technique. However, ransomware writers
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actively develop new techniques to evade the existing solutions. Ransomware be-

ing the deadliest among other malware therefore, it is essential to develop a new

defensive mechanism that is harder to bypass, and are capable of mitigating the

novel threats. This proposed mechanism observes vulnerabilities that help to ef-

fectively classify and detect ransomware from other malwares that are actually

non-ransomware and are less threatening which might help in revealing more se-

curity points that need to improve by antivirus solution providers. The proposed

technique provides deeper insight into hardware features to provide a framework

against new ransomware attacks and tools. The combination of these analyses;

hashing, DLLs file static analysis, and dynamic analysis using hardware features

along with the behavioral analysis of monitoring files helps to inform future pre-

vention strategies for Windows-based ransomware and improve security solution.

1.6 TOOLS AND TECHNIQUES

Following tools and techniques are used in this work.

1. Host Operating System: Ubuntu (version LTS 14.04) 32 bit;

2. Virtual Environment: VMWare Workstation Pro and Cuckoo sandbox hav-

ing Windows XP;

3. Machine Learning Classifiers: Random Forest, J48, and Naive Bayes;

4. Perf: for hardware performance counter;

5. Wine: to analyze windows .exe files on Ubuntu;

6. WinMD5Free v1.20: to calculate and display hashes to identify ransomware;

7. PEiD Program (UPX version 0.89.6-1.02): to detect packed files;

8. Dependency Walker: to explore DLLs and functions imported by malwares;

9. PEview: to display the structure and content of the PE
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10. Windows Filesystem Minifilter Driver Framework: a standard kernel-based

approach to achieve system wide filesystem monitoring in multiple windows;

11. SSDT: for API functions and system calls monitoring;

12. WEKA: for training and testing machine classifiers;

13. VirusTotal: to report where applications were flagged as ransomware [19];

14. Cuckoo Sandbox: to analyze generating reports;

15. Python 2.7



Chapter 2

BACKGROUND AND

LITERATURE REVIEW

2.1 INTRODUCTION

Ransomware is a sub category of malware and malware comes in many forms which

are explained below:

2.1.1 MALWARE

Malware is a malicious piece of code which not only takes control over a system

but steals personal information and tries to damage it. There are many types

of malware which threat victims differently, so can be classified into following

categorized:

A.PersonalSpyware

Spyware tries to collect personal information such as login credentials, geographical

location, browsing habits, license keys or text message history over a particular

period of time. With personal spyware, it transmits the stolen information to

a remote server and installs the software without the users knowledge to have a

physical access to the device [10].

9
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B.Ransomware

Malware that can be a used as a tool for blackmailing is referred as ransomware.

Ransomware is malicious software that secretly infects victims device, and sud-

denly demands a ransom payment in order to decrypt the encrypted data.

In this work, we present a study of different ransomwares features using a hy-

brid technique. This study of classification and detection of ransomware aims to

assist researchers and individual users to counter cybercriminal activities. In our

knowledge, there does not exist any recent study related to these ransomwares fea-

tures that use System calls, API Calls, registry activities and performance counter

features collectively in a single study.

C.Backdoors

Backdoor contains malicious instructions and a piece of code that installs itself

onto a device to get access from users systems. It allows remote access to an

infected host, and let the attacker connect to the device typically bypassing normal

authentication and security mechanisms [12].

D.Bots

Bots provide the ability to the attacker to enable remote control of a host. Botnets

are used for performing distributed operations that present a dangerous security

threat, such as sending spam e-mails, Denial of Service (DoS), mining crypto-

currency, and many more [20].

E.Downloaders

Downloader program is a malicious code that downloads additional malware from

remote servers, usually configured by cyber-criminals when they take control over

the device and get access to all files and folders.

F.Rootkits

Another type of malware that consists of malicious code designed to pair with

other malware code, such as a backdoor, to interfere with security software of the

infected device to evade detection.
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G.Scareware

Scareware is just a piece of software that uses to spread fear among users and to

sell their product, such as, a very well-known scareware is rogue antivirus (AV).

H.Worm or virus

A malicious piece of code capable of copying itself and can infect other devices

[12].

2.1.2 RANSOMWARE

Ransomware, a malicious software that locks users system until a ransom amount

is being paid off. The first ransomware program was originated in 1989 and was

labeled as AIDS Trojan [21]. In the beginning, few cases were reported back in 2005

in Russia and were attacked by its neighboring countries like Belarus, Ukraine, and

Kazakhstan [22]. Later on, ransomware spread widely by employing different social

engineering techniques and uses more advanced encryption techniques to conceal

user data. In 2007, first time Locker-ransomware was appeared in Russia. In 2013

CryptoLocker [23] ransomware was observed that spreads rapidly. FBI reported

that CryptoWall causes $18 million from April 2014 to June 2015 [24]. CryptoWall

version 3 [4, 5], caused an estimated $325 million whereas CryptoWall version 4

causes $7.1 million damage globally [4]. Ransomware victimization has increased

by 3500% more than the fourth quarter of 2015 within the starting period of 2016

[21]. According to CNN News (2016), $209 million dollars were paid within a few

months of 2016 and it reaches up to 80% at the end of year [25]. Recently, the

new type of ransomware emerges in 2017 named as WannaCry that effects widely

over more than 150 countries. [3]. It has been stated that the top six countries

impacted by all types of ransomware in 2015 are the United States, Japan, United

Kingdom, Italy, Germany, and Russia [26]. In 2015, a report generated from the

Cyber Threat Alliance explained the total damage caused by ransomware was

$325,000,000 [22].

The most common families of ransomware along with their originality are listed

below in Table 2.1 [27]:
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Table 2.1: Ransomware and their origin years.

Name Year

PCCYBORG Trojan 1989

One Half Virus 1994

Trojan.GPCode 2005

Trojan.Cryzip 2006

Locker ransomware 2007

GPcode.AK 2008

Citadel toolkit 2012

Reveton 2012

CryptoLocker 2013

CryptoWall 2014

CryptoDefense 2014

PoshCoder 2014

Virlock 2014

TeslaCrypt 2015

CryptoFortress 2015

CryptoTorLocker2015 2015

CTB-Locker 2015

CryptoWall 2016

Xorist 2016

JavaScript-only ransomware-as-a-service 2016

Filecoder 2017

Petya 2017

JAFF 2017

WannaCrypt 2017
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2.1.3 HOW RANSOMWARE WORKS?

Ransomware is a longlasting problem and Windows ransomware are increasing

quantitatively and qualitatively. In general, all ransomwares go through similar

stages. A ransomware usually attacks the victims device by some means of user

activity such as; user either open an email received from an unknown source or

have a visit on malicious websites, clicked on email attachments, or press a mali-

cious web-link, or spread through other infected devices. The system gets infected

after the ransomware acquires administrative privileges. It then tries to contact

Command & Control server in order to steal victims information and send back to

the attacker. It also locks the user device and demands victims to pay ransom in

the form of untraceable payment methods like Bitcoins by changing the desktop

background wallpaper or by generating a new folder on a desktop which shows

payment methods to regain system access as shown in figure 2.1.

Ransomware thus searches for different files and folders to start encrypting all types

of files(.doc, .xlsx, .pdf, .jpeg, .png, etc) by generating symmetric key from the

command & control server using asymmetric (RSA) encryption algorithm. RSA

algorithm uses two keys, public key for encryption and private key for decrypting

Figure 2.1: Screenshot of Windows Ransomware Payment
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data [28]. Meanwhile, ransomware removes all the backup points, backup folders,

and shadow volume copies [20].

2.2 LITERATURE REVIEW

Numerous techniques have been suggested to identify the vulnerability of ran-

somware and these techniques based on either static or dynamic analysis helps in

classifying and detect ransomware with the help of some tools and techniques.

One of the crucial and complicating factors in ransomware static analysis is the

emerging of new programs that modify an executable file to hide its data and

the actual program logic that can only be found from reverse engineering tech-

niques. Those programs that can alter other program files to compress their data

and all contents are known to be as ”executable packers” or just ”packers”. Con-

sidering pattern-matching based approaches, the program Portable Executable

(PE) Identifier (PEiD) [29] found out as a widely used tool for detecting bina-

ries that exhibit unpack-execute behavior. This type of static analysis helps in

finding cryptographic algorithms in PE files, and access the capability to extract

the information to another tool that is IDA pro. [5] suggests that static based

detection technique as used by [30] can help in evading AV, usually at the start of

ransomware.

String is another helpful tool used in static analysis for analyzing files having ASCII

and Unicode strings in binary data. With the help of strings, the analyzer can get

a quick overview of malware capacity and ability. Few strings are embedded that

can be extracted from executable files using a wide variety of tools.

Another way to analyze statically is to examine the lists of dynamically linked

functions in an executable with the help of Dependency Walker program [12].

Both methods static and dynamic have their own benefits and limitations. Fol-

lowing is the literature review of some state-of-the-art techniques in ransomware

analysis.



Background and Literature Review 15

2.2.1 STATIC ANALYSIS

In [31], authors elaborate that detection of malware using static-based analy-

sis without executing in order to find out malware’s malicious activities. If the

analysis configures out any malicious code, the executable will be stopped from

launching. Authors presented a case study of CryptoLuck ransomware which was

first seen in 2016, to highlight the importance of behavioral based ransomware

detection. They find out that the goodate.dll was located in its current directory

which means that CryptoLuck hijacks Google DLL with its own DLL file.

In [32], authors provide an experimental analysis on windows and android plat-

form by selected ransomware variants from existing ransomware families. Mainly

focusing on their characterization. They selected 17 Windows and 08 Android

ransomware families for analysis. Authors compare variants of ransomware with

each other and they find out with the analysis that ransomware variants show

similar characteristics, however, they show different ways of payload. They used

reverse Engineering process to analyze ransomware. Features used for the Win-

dows ransomware are file system activities, registry activities, device control and

communication, network activity and locking mechanism. For detection in win-

dows operating system, they have checked MD5 checksum values for each analyzed

sample and checked it against antivirus search engines. The experimental results

revealed that Windows platform ransomware detection is possible by observing

abnormal filesystem and registry activities.

In [33], authors observed targeted malware by applying considering various fea-

tures n-gram, byte sequence, opcode, and portable executable header and apply

machine learning methods. The major problem faced by authors in using machine

learning for analysis is the lack of training dataset. Due to the shortcomings of

static analysis, it is alone not sufficient enough to analyze malware. Therefore,

researchers prefer to do either dynamic analysis or hybrid analysis for ransomware

detection.
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[19] authors proposed R-PackDroid a supervised machine learning based 10 fold

cross-validation technique to detect Android ransomware statically from benign

and other malware applications using API packages. The proposed approach is a

lightweight technique because it does not require prior knowledge of ransomwares

encryption mechanisms. However, the proposed approach cannot analyze applica-

tions having feature code required to be dynamically loaded at runtime or that are

fully encrypted. Authors explained that the proposed approach can be integrated

with other dynamic analysis techniques.

In [34], the effective ransomware prevention technique was performed statically

using process monitoring. The proposed technique is based on three modules:

Configuration module, monitoring module and processes module on file events that

occurred when the ransomware accesses and copies files using statistical methods

on processor usage, and I/O rates. The hash information method is used for

detection of Cryptolocker type ransomware. Random Forest classifier come up

with good results, however, employing unsupervised methods such as clustering

revealed unsatisfactory results.

In [5], authors suggest that static based detection technique as used by [30] can

help in evading AV especially only in the first phases of new ransomware campaign.

2.2.2 DYNAMIC ANALYSIS

Dynamic analysis technique is extremely powerful in a way that it is performed

by executing any malware application prior to investigation. Dynamic analysis

usually performed after basic static analysis has reached a dead end, whether due

to obfuscation or packing [12]. Dynamic analysis let you monitor ransomware

applications by executing it in the controlled environment. Unlike static analysis,

dynamic analysis unveils the real functionality that might be not possible to be

observed by implementing only static approaches [12].

In [27], authors performed ransomware behavioral analysis on windows platform of

14 strains of ransomware and perform a comparison among ransomware API calls
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with baselines of normal operating system behavior. They observed the individual

behavioral pattern of ransomware and clean applications. They identify the system

activities and events that were executed during each Win/32 baseline operation.

The results showed that ransomware used a small subset of all system calls logged

during normal baseline operations.

In [35], authors present an automated detection and analysis of ransomware based

on dynamic ransomware detection system using data mining techniques like RF,

SVM, SL, and NB. They monitor dynamic behavior by generating API calls flow

graph CFG and generate feature sets to distinguish between benign and ran-

somware. The results show that the proposed methodology can improve in ran-

somware detection using SL algorithm that achieved 98.2% detection rate and

1.2% false positive rate.

Authors in [7], perform a dynamic analysis system which they named as ’UNVEIL’,

designed specifically for the detection of ransomware by automatically generating

an artificial user environment. Later, detect ransomware when it interacts with

user data. Authors keep a record of the changes found in the systems desktop that

indicate ransomware like behavior i.e., locking Desktop. They claim that UNVEIL

is capable enough to identify previously unknown ransomware that was not de-

tected by the antimalware industry. Their system is implemented through custom

Windows kernel drivers that allow monitoring filesystem, I/O Data Buffer Entropy

used for every read and write request to a file captured in an I/O trace. They

performed a long-term study analyzing 148,223 recent general malware samples in

the wild.

In [18] authors present an automated detection and analysis of ransomware based

on dynamic ransomware detection system by producing behavioral logs with Cuckoo

sandbox. They only considered pre-encryption features for application to be ran-

somware. Their experimental results revealed that TF-IDF gives better results as

far as WannaCry is concerned. Authors validate that the method can be able to

extract features to differentiate malware using logs.
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There are several other research efforts which are based on a machine learning

approach to detect ransomware exploiting the dynamic or runtime features of

executing applications. In [36], evaluation of machine learning classification was

performed on malware. Authors observed network traffics and extract its features

while filtering out TCP packets and trained it using five classifiers (Bayes, RF,

KNN, J48, and MLP) for evaluation.

Another proposed study of dynamic analysis of ransomware through monitoring

file system activity of windows platform was conducted by [5]. They used a clas-

sification technique to classify goodware and ransomware using three machine

learning classifiers (EldeRan, SVM, and NB). Authors present EldeRan, which

they refer as a machine learning approach for dynamically analyzing and classify-

ing ransomware from clean ones. They considered a wide range of features such

as Windows API calls, Registry Key Operations, File System Operations, file op-

erations performed per File Extension, Directory Operations, Dropped Files, and

Strings. Feature selection was performed using MI criterion. Their evaluation

shows that EldeRan achieves ROC curve of 0.995 whereas achieving a detection

rate of 96.3%supporting dynamic analysis for ransomware detection. Authors

concluded that registry key and API calls are the two classes with most relevant

features with the Logistic Regression that outperforms Naive Bayes.

Hardware performance counters are typically used by programmers to measure

the performance of the under investigation software with the aim of improving it

on a target platform [37]. In [17] uses a dynamic approach to classify hardware

malware based on their performance counters. They applied machine classifiers

that were KNN and Decision tree with the result of 90% accuracy and 3% FP.

Performance counters represent the true execution behaviors of the application.

However, none of the existing machine learning ransomware detection techniques

uses hardware performance counter for ransomware classification. Malware can

employ obfuscation techniques to deceive antivirus that relies on static analysis;

however, a malware cannot hide its malicious intent that is hidden in the hardware
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performance counter pattern. Therefore, we argue that hardware performance

counters can act as a vital source for differentiating malware and ransomware.

This thesis focuses on the use of hardware performance counters to analyze the

runtime behavior and detect ransomware in order to find out how accurately can

hardware performance counters are able to classify malware and ransomware. We

argue that ransomware are inclined to reveal in the form of hardware perfor-

mance counter similar detectable dynamic features (e.g., Page Faults, branches,

branch-misses, instructions etc.). Multiple machine learning classifier, i.e., Deci-

sion Tree(J48), Random Forest, and Naive Bayes are evaluated using the perfor-

mance counters, in an order to get the answer of the research questions mentioned

above in section 1.3.

2.3 CRITICAL ANALYSIS

After a comprehensive study of the state-of-the-art techniques for Windows ran-

somware analysis, we summaries strengths and weaknesses of the current ap-

proaches as shown in Table 2.2:

Table 2.2: Literature Survey of Different Methodologies

Ref Methodology Strengths Weaknesses

[36] Filter TCP packets, extract network

traffic features, labeled data

Perform a good comparative

analysis between 5 ML and

with other papers

No classification be-

tween malicious appli-

cations

Use 5 ML classifers (Bayes, Random

Forest, KNN, J48, MLP)

For android only

[32] Present the life cycle of Windows

based Ransomware using basic static

and basic dynamic analysis

Explains in detail working and

functionality of RW and mali-

cious applications

No ML

MD5 method, Cuckoo Sandbox used PEiD tool is used for windows

RW detection

No classifier

Analyze Filesystems, registry activi-

ties and network

Lack of experimental

results

operations

[18] Dynamic behavioral analysis of wan-

nacry RW

Study helps in further manual

analysis of logs

Considered only one

RW i.e., wannaCry
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Present a method to extract features

of RW from hosts logs and analysis

pattern generation

Accurately presents pattern

generation logs and dynamic

analysis

No ML classifier

Monitors files, folders, memory

dumps, network traffic, processes,

API calls via Cuckoo

Very basic and trivial

results

[7] Dynamic long term study to Moni-

tors file system, I/O activity

Successfully detect 1 unknown

ranswomware

Based on kernel level

activities only

Use Windows File system Mini filter

Driver framework

Submitted to VirusTotal Risk RW run at kernel

level may stop to mon-

itor some files

Detect screen lock on windows plat-

form

96.3% TP rate and 0% FPs

[5] Dynamic analysis to Classify be-

tween goodware and ransomware us-

ing Machine Learning

Come up with automated tool

to analyze new software and

evaluated the performance of

the 3 ML classifiers (EldeRan,

SVM, and NB)

The experimental

setup for RW analysis

was not natural (com-

monly used apps were

not installed in VM)

Monitors file system activity on win-

dows platform

Concluded that registry key

and API calls are important

features

Initial dataset was

larger

Features used: API calls, Registry

Key, File System Operations, Direc-

tory operations, Strings

Can enhance the detection ca-

pabilities of AV software

Unable to analyze RW

that show silent behav-

ior, or wait for a user

to do something

[27] Analyzed 14 strains of windows ran-

somware.

Concluded that API calls hav-

ing helpful feature

Considered only single

feature i.e., API calls

Compared API calls through RW

processes with baselines of normal

operating system behaviour.

Ignore all other fea-

tures

[38] Analyzed 15 ransomware families Detailed evolution-based study

from 2006-2014

Proposed only general

methodology

Presented detailed analysis of pay-

ment methods and the use of Bit-

coin.

Proposed high-level mitigation

strategies such as the use of de-

coy resources to detect suspi-

cious file access.

[17] Android Malware detect with perfor-

mance counters using a Dynamic ap-

proach

A major support is that run-

time behavior can be captured

using HW performance coun-

ters are essential to detect mal-

ware

No static analysis and

Implement only with

malware dataset, not

ransomware
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Applied ML classifiers (KNN, Deci-

sion tree)

Ignores other impor-

tant features

[35] Automated Dynamic approach using

ML techniques RF, SVM, SL and

NB

Proposed methodology im-

proved RW detection rate

Extract only the fea-

tures of 168 software

samples for estimating.

Monitors API calls flow graph CFG

using k fold cross validation

SL algorithm achieved 98.2%

detection rate and 1.2% false

positive rate

Considered only API

features

Distinguish between benign and ran-

somware

[34] Statically analyze process monitor-

ing and I/O rates features.

The hash information method

is used for detection of Cryp-

tolocker type ransomware.

Only for android plat-

fom

The Proposed technique is based on

three modules: Configuration mod-

ule, monitoring module and pro-

cesses module on file events

Random Forest reveal good re-

sults

Results for unsuper-

vised approach (clus-

tering) were not satis-

factory

It has been observed from the literature work that most of the techniques [5] can

either only observe system calls, or API calls [18, 19, 27, 35] or file operations [7],

processor usage [34], or registry activities [32]. Some research work is based on

static analysis [31] whereas other proposed techniques that mainly focuses on dy-

namic analysis for classification. There exists no such work that considers all these

important aspects in a single methodology that could improve ransomware detec-

tion rates. Therefore, we propose a ransomware analysis methodology to combine

all these features(i.e., cache-misses, branches, branch-misses, CPUs utilized, task

clocks, cycles, context-switching, CPU migrations, instruction per cycles, page

faults, statistics on API calls, file monitoring operations, strings, list of DLL func-

tions imported and registry keys) to classify ransomware from non-ransomware so

that ransomware classification accuracy can be improved. In addition to that, no

other existing approach analyze hardware execution profile for the classification of

ransomware.
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METHODOLOGY

In this chapter, we cover the methodology of our proposed framework, details of a

dataset, features extraction process using static and dynamic analysis and training

of the machine learning classifiers. We have performed our experimental analysis

by proposing two methods: Hybrid Hierarchy-based Ransomware Classification

(HHRC) and Hybrid-Combined Ransomware Classification (HCRC)) analysis as

explained in Section 3.1 and Section 3.2, followed by the training phase of HHRC

analyzer in Section 3.1.1. Specification of data collection in Section 3.1.2, static

feature extraction in Section 3.1.3 whereas dynamic feature extraction is explained

under Section 3.1.3. Training phase of HCRC is explained under Section 3.2.1.

3.1 PROPOSED HYBRID HIERARCHY RAN-

SOMWARE CLASSIFICATION (HHRC) AN-

ALYZER

Presenting the overall methodology used for the proposed hybrid analyzer known

to be as Hybrid Hierarchy-based Ransomware Classification (HHRC) analyzer.

HHRC analyzer is a combination of static analysis feature vector separately trained

on machine learning classifiers. After the output, all those applications which are

22
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labeled as ransomware in static analysis machine learning analyzer are considered

to be ransomware as a final output. Therefore, such feature vectors are eliminated

in dynamic analysis. Thus, reducing computational time. We called it HHRC

analyzer due to the hierarchy it followed as explained in Figure 3.1. Therefore,

in dynamic analysis, only those applications are trained on a machine learning

classifier that are either mispredicted or not predicted in static phase in order to

give output as ransomware or non-ransomware.

The proposed hybrid Windows ransomware classification and detection approach

based on machine learning classifiers as explained in Figure 3.1 starts with a set of

malware consisting of ransomware and non-ransomware. The first phase is known

as static analysis performed by analyzing applications in a virtual environment

using the hashing technique. All the malicious applications execute via hashing

programs that produce a unique hash that identifies that malware (a sort of fin-

gerprint), winMD5 is used to calculate that hash values [12]. We called it process

1 (P1). Figure 3.2 and 3.3 shows hashing process. This hash value can be used

for online search if the file has already being identified or not by any AV. These

applications are then further analyzed in process 2 (P2) to make sure either they

are packed or obfuscated. PEiD can be used to detect such type of packer or

compiler employed to build an application, which makes analyzing the packed file

much easier [12]. Next, we explore applications hierarchical tree diagram of func-

tions and DLLs and embedded strings. The most useful piece of data that we can

able to find out at run-time are the list of functions that the executables imports.

Above all the linking methods, dynamic linking is the most common and the most

interesting for malware analysts [12], where libraries are dynamically linked, then

the host Operating System searches for the relevant libraries after the application

is loaded. When the application calls the linked library function, that function

executes within the library [12]. This can be possible using DependencyWalker

tool.

These features then act as feature vectors that are being used to train machine

learning algorithms. Once algorithms are trained, these trained algorithms can
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classify the given applications into ransomware and non-ransomware only if P1 and

P2 both labeled it as ransomware. The application is labeled to be as ransomware

as output. This whole process is referred to be as phase 1. All those applications

which are identified as ransomware in phase 1 are eliminated.

Applications which are labeled only as non-ransomware are then further analyzed

dynamically in phase 2 which are then executed under a controlled environment

using Cuckoo sandbox that records the dynamic behavior of the applications and

produces recorded activity logs as output. Different dynamic features (such as

registry key operations, API calls, file operations, and hardware features) are

extracted to produce feature vectors. These vectors are used to train different

machine learning classifiers. Once these algorithms are trained, they can clas-

sify applications into ransomware and non-ransomware on the basis of dynamic

features. Detailed analysis of our proposed framework of dynamic analysis is as

follows:

1. Those applications which are labeled as non-ransomware in static analysis

phase 1 are again checked dynamically under a controlled environment us-

ing Cuckoo sandbox that records the dynamic behavior such as API calls,

Registry keys and behavioral analysis of the applications are produced and

recorded activity logs as output.

2. Hardware behavior of executed applications are analyzed on Ubuntu envi-

ronment 14.04, an operating system via perf tool to analyze the run-time

behavior. Wine is used to run Windows-based executable files on ubuntu

whereas SSDT is used to extract other file system monitoring features. Perf

[39] command of Ubuntu is used to collect hardware features during execu-

tion of the application.

3. The feature vector input along with a label ransomware/non-ransomware

(i.e., application category as 1/0) is used to train machine learning algo-

rithms (J48, Random Forest, and NB). The reason for using these classifiers
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is that they are well-known in the detection of ransomware and are used

throughout years by experts in analyzing malicious software [5, 17, 34–36].

4. After the training of classifiers, they are used to classify applications into

ransomware and non-ransomware in the testing phase as shown in Figure

3.5 which explains the training phase of the analyzer which employs 50%

ransomware and 50% non-ransomware applications.

3.1.1 TRAINING PHASE OF HHRC ANALYZER

The training phase of HHRC analyzer starts by analyzing a set of malware consists

of 50% ransomware and 50% non-ransomware applications that are analyzed under

a controlled environment. The features are then extracted by employing tools and

techniques as mentioned in section 1.6. These feature vectors along with their

category (ransomware labeled as 1 and non-ransomware labeled as 0) are then

given as input to machine learning static analyzer. Once these algorithms are

trained, they can classify applications into ransomware and non-ransomware on

the basis of static features as shown in Figure 3.4

The second phase of HHRC analyzer starts by analyzing applications dynamically

under virtual environment to get sets of feature vectors. These feature vectors

along with their category (ransomware labeled as 1 and non-ransomware labeled

as 0) are then given as input to machine learning dynamic analyzer. Once these

algorithms are trained, they can classify applications into ransomware and non-

ransomware on the basis of dynamic features as shown in Figure 3.5

There are few important steps to achieve the objective of training machine learning

algorithms for ransomware detection. These steps are discussed in the forthcoming

sections.
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Figure 3.2: Produces hash value.

Figure 3.3: Screenshot shows matched md5 values.

Figure 3.4: Workflow of training classifier for HHRC analyzer.

3.1.2 DATA COLLECTION

For the sake of experimentation, we collected our dataset comprises of 500 ran-

somware and non-ransomware executables (that are not clean apps but other mal-

ware) randomly downloaded from Virusshare.com [40] and from [5] dataset based

on several families. Virusshare is an archive of malware samples to provide re-

searchers, digital forensic experts, and interest groups the access to samples of

malicious code. All the collected dataset was labeled by top-performing antivirus
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Figure 3.5: Workflow of training classifier for dynamic analyzer.

according to the definition of a malware i.e., a malicious code that may be a ran-

somware or non-ransomware program. The employed classifier was trained using

the behavioral features for both the ransomware and non-ransomware with an ex-

plicit labeling (i.e., Ransomware /Non-Ransomware). For training and validation,

a disjoint data set is used. Table 3.1 gives a brief overview of the dataset used for

the experimentation for this research.

Table 3.1: Details of Dataset Used

Application Type Label No of Applications used for experimentation

Ransomware 1 250

Non-Ransomware 0 250

3.1.3 EXTRACTION OF STATIC FEATURES

During static analysis, we extracted Windows ransomware by analyzing appli-

cations in a virtual environment using the hashing technique, PEiD, PEView,

Strings and DependencyWalker tool to extract all the features statically. Strings

are another useful part to collect some basic information as far as static analysis

is concerned. A string in a program is a sequence of characters such as ”the, url,

.dll.” A program contains strings in case it print out a message that join with a

URL, or can move a file to a specific location. Utilizing strings throughout the

program can be a simple way to get hints about the functionality of a particular

program [12].
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The information gathered through static analysis then act as feature vectors. We

extracted 1713 features by performing static analysis. These feature vectors along

with the application category label (ransomware, non-ransomware) are used to

train machine learning algorithms. Once algorithms are trained, these trained

algorithms can then classify the given applications into ransomware and non-

ransomware.

3.1.4 EXTRACTION OF DYNAMIC FEATURES

Dynamic analyzer starts with the second phase of our proposed hybrid analysis,

which is to analyze the behavior of those suspicious applications that are either

mispredicted or not predicted at static analyzer phase 1. Dynamic analysis per-

formed by executing the applications in a controlled environment such as Cuckoo

sandbox [41].

It is quite efficient to detect the malicious application behaviors that remain

unidentified during static analysis. In earlier work, a lot of attention has been

paid to study the API calls during dynamic analysis. Nevertheless, there are

other techniques that can lead to an efficient and less expensive dynamic ran-

somware detection, for example, considering only single feature. In our proposed

framework, we explore multiple dynamic features (API calls, Registry operations,

Files operations, and hardware features etc) that are less expensive but are more

helpful in ransomware detection. Cuckoo sandbox [41] is selected in a Linux plat-

form for automated dynamic analysis of Windows executable ransomware because

of its an open source software. It automatically runs and analyze files and col-

lect comprehensive analysis results that outline what the ransomware does while

running inside an isolated operating system. All processes and file changes are

tracked and logged.

The first step is to configure cuckoo sandbox in a controlled environment in order

to run executable applications. The dataset is in the form of .exe files is located
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in the host Operating System (Ubuntu 14.04 LTS). Cuckoo is used to run an

application for automated dynamic analysis. Figure 3.6(a) and 3.6(b) shows the

execution of an application within the Cuckoo sandbox.

Cuckoo output log is saved for each monitored application in the host Operat-

ing system. This is a lightweight format used fort data-interchange and easily

interpreted by the humans.

(a)

(b)

Figure 3.6: Execution of Cuckoo

The information gathered through dynamic analysis then act as feature vectors.

We extracted 10985 total features by performing dynamic analysis. These feature

vectors along with the application category label (ransomware, non-ransomware)

are used to train machine learning algorithms. Once algorithms are trained, these

trained algorithms can then classify the given applications into ransomware and

non-ransomware.
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Generated logs and behavioral analysis reports are recorded by Cuckoo as shown

in Figure 3.7, 3.8 and 3.9.

Figure 3.7: Summary of the executed malware

Figure 3.8: Details of the files executed

Figure 3.9: Behavioral Analysis of the files executed

The dynamic features of an application show a big picture of control flow and

data flow information about the application. This information is used to feature

vectors for the training of machine learning algorithms.
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Table 3.2 shows some of the features we have collected during the dynamic analysis

of applications. These features are based upon the events that are generated during

execution of the application in a virtual environment.

Table 3.2: List of Few Collected Dynamic Features

API Calls Registry Activites File Monitoring Hardware

GetSystemDirectoryA DELETE:DHKEY

LOCAL MACHINE

\SYSTEM \ControlSet001

\Services\pfmfs 640smx

DELETED:C: \Program

Files \WinCalendar V4\

cache misses

WriteConsoleW DELETE:DHKEY

CURRENT USER \Software

\APN PIP \SFFZ

DELETED:C: \Program

Files \ChatSend Tool-

bar\tbunsy3.tmp\

task Clock

NtReadVirtualMemory DELETE:DHKEY

CURRENT USER\Software

\Microsoft \Windows

\CurrentVersion \Run\

DELETED:C:

\WINDOWS\Temp\

CPUs Utilized

RemoveDirectoryA DELETE:DHKEY

LOCAL MACHINE

\SOFTWARE \Classes \.bz\

DELETED:C:

\Documents and

Settings\MyUser

\Application

Data\Microsoft\

context

Switches

GetKeyState DELETE:DHKEY

LOCAL MACHINE

\SOFTWARE \Classes\.r03\

OPENED:C: \Documents

and Settings\All

Users\Application Data\

CPU Migra-

tions

FindFirstFileExA DELETE:DHKEY CLASSES

ROOT\

OPENED:C: \Program

Files\DebugMode\

page Faults

NtQueryKey OPENED:HKEY

LOCAL MACHINE \Software

\Google \Picasa\

OPENED:c:

\d5a412dfc95bd9972

eaf87bf6a49\update\

cycles

HttpOpenRequestA OPENED:HKEY

CURRENT USER

\Software\d18656c1d

1d6e4d5de54423754

2640205da94d30308

2605b5cbdc5ca60d4 ab37\

OPENED:C: \Program

Files\MSECache

\wordview\

instructions

HttpSendRequestA OPENED:HKEY

CURRENT USER \Software

\Local AppWizard-Generated

Applications\StuDormMS\

READ:c:\Documents

and Set-

tings\MyUser\Favorites\

branches



Methodology 33

GetUserNameA OPENED:HKEY

LOCAL MACHINE

\SOFTWARE \Classes

\CLSID\7b8a2d94-0ac9-

11d1-896c-00c04Fb6bfc4\

READ:C:\Documents

and Set-

tings\MyUser\Local

Settings\Temp\is-

80O4H.tmp\

branchMisses

HttpOpenRequestW READ:HKEY

LOCAL MACHINE

\SYSTEM\ControlSet001

\Services\Messenger\

WRITTEN:C: \Program

Files \ImproveSpeedPC\

seconds Time

Elapsed

WriteConsoleA READ:HKEY

CURRENT USER

\Software\Microsoft

\Windows\CurrentVersion

\Internet Settings

\5.0\Cache\Cookies\

WRITTEN:c:\a6a468

1e30cf844c1dc05d21

580a99\pkg\

NtOpenFile READ:HKEY LOCAL

MACHINE\SOFTWARE

\Classes\.wma\

WRITTEN:c:\b56

a85006c8424892

58be9e8cbda

\mousekeyboardcenter

\setup64\files\1033 \rtf

\mouse \gaming mice\

NtCreateProcessEx READ:HKEY LOCAL

MACHINE\SOFTWARE

\Microsoft\Windows

NT\CurrentVersion \Image

File Execution Op-

tions\photohse.EXE\

GetSystemInfo WRITTEN:HKEY

CURRENT USER

\Software\5ab2c353\

NetShareEnum WRITTEN:HKEY

CURRENT USER

\Software\HuluDesktop\

FindWindowExW WRITTEN:HKEY

CURRENT USER

\Software\WinRAR

\Setup\.uu\
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3.1.5 FEATURE VECTOR

The choice of a good feature set is the initial phase of any data mining approach.

Some of them were inspired by previous work [5], but we added our features too

i.e., Hardware performance counters, DLLs and strings.

Let V be a vector comprising of a set of 500 ransomware applications. For every

application at ith location in the dataset, we produce a binary sequence

Vi= s1, s2...sj and

sj= 1, if jth feature exists.

0, otherwise

The recognized features are then arranged as a sequence of 0 or 1 in a comma

separated list. The presence of a specific feature is denoted by 1 and the absence

is denoted by 0 in the list.

Following sequence represents an example of the feature vector for ransomware

applications and non-ransomware applications:

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

Multiple features as shown above in Table 3.2 obtained during dynamic analysis are

used to generate the binary feature vector. These features are also used to train
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the dynamic analyzer (machine learning algorithm) that identifies the malware

sample as ransomware and non-ransomware in the given dataset.

3.1.6 FEATURE SELECTION

Due to a large number of attributes in the dataset, there is a need to reduce those

attributes in order to find the most relevant among to solve predictive modeling

problem. A large number of features in the dataset should be filtered and refined.

In addition, some features may contain redundant information from other features.

That lead towards increasing computational cost and reduce accuracy.

The aim of this step is to moderate the high-dimension of each feature instance

in our collected dataset by introducing subsets of features. Subset features are

helpful in predicting class label accurately. Features selection helps in improving

the accuracy of the classification models and reducing time complexity. Addition-

ally, feature selection minimizes the factors of overfitting; the time required for

training/testing and increases the accuracy to generate simple interpreted models.

For this purpose, we have used info gain method to get the features list playing

a most significant role in the classification important features were selected out

of 1713 total 25 produced by static analysis. These features consist of PEview

info, DLL and string collectively. Therefore, following the recommendation of

[42], the information gain criterion [43] will be used in this thesis to select a subset

of features, that finds the most appropriate features by assigning weights to the

information to emphasize the effectiveness of the features.

A specific method called InfoGainAttributeEval from Weka machine learning tool

was applied to attribute selection. We selected 25 features out of 1713 after

applying feature selection algorithm based on the static results and selected 47

features out of 10985 based on dynamic results.
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The information gain of an attribute C on sample data S can be calculated as

below:

InfoGain(C, rj) = entropy(C)− entropy(C | rj)

Figure 3.10 describes the feature selection of top-ranked static features (ranked by

the algorithm) and plays a key role in ransomware identification in a dataset. It

has been seen clearly that static analysis features reach maximum range to 0.1285

which is not that important as we required. The top feature is SizeofStackReverse

attained 0.1285 scores, then MajorOperatingSystemVersion achieving 0.11983, and

then Subsystem which remains on 0.09727 as explained in Appendix B that shows

the brief description of these top-ranked features obtained through feature selec-

tion method.

Figure 3.10: Rankwise Static Feature Selection using InfoGain method

The features ranked as top-ranked from dynamic data using Info Gain method

are shown in Figure 3.11 with their corresponding scores respectively. 50 Features

were produced by dynamic analysis out of 10985 whereas 47 features were selected

for HHRC. The figure depicts that the highest range attained through info gain

method is 0.8 which is cache-misses, then branches achieved 0.73, instructions get
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a score of 0.71, and pagefaults is on 0.65. These are the hardware features that

achieved the highest score during the feature selection method.

The registry key operations also play a role during feature selection by gaining

0.6, 0.59, and 0.314. Whereas API calls CreateDirectoryW attained 0.414 and

NtTerminateProcess is on last of top-ten ranked features gets 0.2 scores.

Figure 3.11: Rankwise Dynamic Feature Selection using InfoGain method

The features ranked by Info Gain method in dynamic phase is explained in Ap-

pendix B along with their description. It has been seen that hardware features

and registry key operations play a role in the classification and detection of ran-

somware.

3.2 PROPOSED HYBRID COMBINED (HCRC)

ANALYZER

The second methodology that we have tried to perform in an experiment is to an-

alyze the performance of single classifier instead of two separate machine learning

classifiers. The experiment is based on training a single classifier using features
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obtained after static analysis separately and collecting dynamic features sepa-

rately. Then both features were combined to make a feature set, we refer it as

Hybrid-Combined Ransomware Classification (HCRC) analyzer. These feature

vectors than given as input to a machine learning HCRC analyzer for training

and validating data. Machine learning algorithm will decide the applications to

be ransomware or non-ransomware.

Figure 3.12 shows the methodology of training HCRC analyzer. It shows that

applications are given as input and static analysis (strings, DLLs and PEView

information) is performed separately on all those applications. Later dynamic

analysis is performed on all those applications to extract features such as Hardware

features, Registry keys, file monitoring operations, and API calls. These features

are then given as input to a machine learning classifier to train analyzer. This

combined analyzer is then tested on applications for ransomware classification

and detection. Results of this are depicted in Chapter 4.
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Figure 3.12: Methodology of HCRC analyzer
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3.2.1 TRAINING PHASE OF HCRC ANALYZER

We further study the impact of combined consideration of both the static and

dynamic features for ransomware classification and detection simultaneously. We

collected static and dynamic features to find out which features are effective and

plays a role in the classification and detection of ransomware. Moreover, how they

can strengthen the ransomware analysis together or separately.

Training phase starts by collecting features from both statically and dynamically

on all applications. The collected features collectively along with their correspond-

ing labels (ransomware or non-ransomware) are provided to train the machine

learning based application analyzer as shown in Figure 3.13.

Figure 3.13: Workflow of training HCRC analyzer

3.3 CLASSIFIERS USED FOR TRAINING PHASES

Selection of correct classifier for training phase is the most crucial phase in our

work. Previous studies [5, 17, 34–36] suggests different classifier on the basis of

results they yield. Therefore, we have selected three classifiers for our training

phase that are: Naive Bayes (NB) [44], Random Forest (RF) [45], Decision Tree

(J48) [46] . The reason of using these classifiers is that for numerical data, choices

are too many - starting from basic decision trees, Naive Bayes, SVM etc whereas for

categorical data Naive Bayes, decision trees and their ensembles including Random
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forest, are good techniques [47]. The data we have used considers both numerical

values& categorical values. Since, we have class labels, therefore, the problem

is called classification problem.So, one option is to go with decision trees, other

possibilities are naive Bayes where you model numeric attributes by a Gaussian

distribution or else Random Forest that combines bagging and random subspace.

With mixed data, choices are limited and therefore need to be cautious and creative

with different choices [47].

We performed a 10-fold cross validation using the whole dataset whereas 80% of

the dataset is used for training purpose and 20% of the dataset is used for testing

purpose.

3.3.1 NAIVE BAYES

The Naive Bayes Classifier [48] is expected to perform well, being relatively simple

to implement and has good detection rates [49]. NB is used to be included in our

work, because of its success being mentioned in the malware classification studies

[50] from many years. We have compared NB performance with other classifiers

such as J48 and RF.

Bayes theorem used to follow a method of calculating the posterior probability, P(c

r), from P(c), P(r), and P(r c). Naive Bayes classifier suggests that the value of a

predictor (r) on a given class (c) is independent of the values of other attributes.

This assumption is called class conditional independence.

P (c|r) =
P (r|c)P (c)

P (r)

P (c|R) = P (r1|c) ∗ P (r2|c) ∗ ... ∗ P (rn|c) ∗ P (c)

• P(c r) is the posterior probability of target class given attribute.

• P(c) is the prior probability of class.

• P(r c) is the likelihood which is the probability of attribute given class.
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• P(r) is the prior probability of attribute.

3.3.2 RANDOM FOREST

Random Forest (RF) is a classifier that used multiple decision tree predictors in

a way that each tree depends on the values of a random vector sampled indepen-

dently and with the same distribution for all trees in the forest [51]. From the

studies, its been observed that RF has excellent and very high accuracy seemed

so far among current classifier algorithms [52] because of its execution effectively

on huge datasets and ultimately come up with an estimation of what variables

are important in the classification. This algorithm generates an internal unbiased

estimate of the error as the forest building progresses [51]. Random Forest is

capable of making the assumption of missing values in data effectively whereby

maintaining accuracy when a large proportion of the data are missing [52].

3.3.3 DECISION TREE (J48)

We have used another machine learning predictive classifier known to be as Deci-

sion Tree or J48 that was employed in WEKA, in order to utilize the concept of

information entropy to make tree and targets the value of a new sample based on

different attribute values of the particular dataset. Dataset is used to split them

into smaller features of subsets dependent (the attribute to be predicted) and in-

dependent (attribute that helps predict the value of the dependent variable) [36].

Later, the normalized information gain is calculated. The feature with highest

information gain is selected for decision making [52]. According to [53] it gives

very high detection rates.

Algorithms Basic Steps:

Steps of J48 algorithm are: [54]

(i) If the instances belong to the same class then the tree represents a leaf so the

leaf is returned with a label of particular.



Methodology 42

(ii) Using the attribute from test data, information is then calculated against every

feature. After that infogain algorithm is implemented to get the result from test

data.

(iii) In the end, the best feature is found on the basis of the present selection

criterion and that feature selected for branching.

3.3.4 SUPPORT VECTOR MACHINE (SVM)

Support Vector Machine is effective in cases where number of dimensions are

greater than number of samples. According to [17] categorization of classifier

could be done as: linear and non-linear. Linear algorithms tries to draw an optimal

hyperplane class X can be pointed as support vectors placed on one side of the

hyperplane and class Y referred as points on the opposite side of the hyperplane as

illustrated in Figure 3.14. Separating classes via n-dimensional data points, where

n is considered as the total number of features. Points on the line are referred

as support vectors. Non-linear classifiers however, have no such restrictions; any

operation to derive a classification can be applied [17]. We choose to focus on

linear algorithms in this work to see either SVM is capable enough to classify

ransomware and other malicious programs. Is it be detectable? Does SVM do

proper classification as we expect in other cases somehow? The classifier is trained

by giving labeled data, the algorithm outputs an optimal hyperplane. After setting

up some parameters, we train the SVM to build SVM model to do our predictions.

However, the results were not as satisfactory as we were expecting. The reason

behind such results were due to dataset not aligned according to SVM, as SVM

is suitable for numeric data. Therefore, we haven’t proceeded SVM for further

analysis and no results were being reported.

3.4 EVALUATION MEASUREMENTS

For performance evaluation of different classifiers, we use the following metrics.
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Figure 3.14: Illustration of hyperplane [55]

ROC curve: Over the past few years, Receiver Operating Characteristic (ROC)

curves [56] are now used widely by many researchers to measure performance

which is quite obvious [57]. Furthermore, ROC curves are being used in many

statistical methods that merge many clues, test results etc., and have been plotted

and evaluated qualitatively. ROC is basically a plot where True Positive Rate

(TPR) is on Y-axis and False Positive Rate (FPR) is plotted on X-axis to calculate

performance. For every possible classification, TPR rate relies on the scenario

where the actual classification is positive and how often the classifier has predicted

as positive. The FPR relies on that when the actual classification is negative how

often the classifier incorrectly predicted positive. Both the TPR and FPR range

between 0 - 1. The area covered below the ROC curve is known as Area Under

the ROC Curve (AUC), is widely utilized for weighing classifier performance [36].

The AUC values represent different levels and many research efforts classified into

Table 3.3

Accuracy: We have used accuracy for evaluating results which is the fraction

of the total number of correctly classified applications as ransomware or non-

ransomware
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Table 3.3: AUC Levels

Levels Definition

1.0 excellent prediction

0.9 great prediction

0.8 good prediction

0.7 better prediction

0.6 poor prediction

0.5 random prediction

< 0.5 unreliable prediction

Accuracy =
TP + TN

TP + TN + FP + FN
, (3.1)

Precision: Precision denotes the proportion of the predicted correctly classified

applications to the total of all applications that are correctly real positives.

Precision =
TP

TP + FP
, (3.2)

Recall: is the fraction of the actual apps that are classified correctly to the total

number of the apps that are classified correctly or incorrectly

Recall =
TP

TP + FN
, (3.3)

F-Measure: The harmonic mean of precision and recall. F measure represents

the value that tells how much the model is capable of making fine distinctions.

FMeasure = 2× Precision ∗Recall

Precision + Recall
, (3.4)

Confusion Matrix: Indicates the number of correctly and incorrectly classified

applications. For our dataset, there were two types of data i.e ransomware and
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non-ransomware. The confusion matrix shows the results in the following terms:

True Positive (TP): It’s the scenario, where the actual classification is posi-

tive and how often the classifier has predicted as positive i.e., the count of the

ransomware applications that are correctly classified as ransomware.

False Negative (FN): It relies on where the actual classification is negative

and how often the classifier incorrectly predicted positive i.e., the count of the

ransomware applications that are incorrectly classified as non-ransomware.

True Negative(TN): This indicates that the count of the non-ransomware ap-

plications that are truly classified as non-ransomware.

False Positive (FP): It indicates the count of all those non-ransomware appli-

cations that were incorrectly classified as ransomware.
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RESULTS

In this chapter, we evaluate our proposed framework for machine learning based

ransomware detection and classification system. We have used improved hybrid

analysis (HHRC and HCRC) to prepare the dataset for the training of machine

learning classifiers. The aim of this section is to discuss the preparation of dataset

using improved hybrid analysis, dataset, experimental setup and performance of

the proposed framework by evaluating obtained results.

4.1 EXPERIMENTAL SETUP

We carried out our experiments on a machine with specification shown in Table

4.1 below.

4.2 DATASET

Dataset used in our experiments consists of two categories of application sets.

Ransomware applications that were collected from Virusshare.com [40] and [5]

dataset. The ransomware dataset consists of 250 executables belongs to different

46
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Table 4.1: System Configuration

CPU Intel core 2 duo 2.13GHz

System Type 32 bit

OS Ubuntu 14.04 LTS

Data Mining Tool WEKA 3.8

Platform Windows XP

RAM 3GB

Sandbox Cuckoo sandbox

Virtual Machine VMWare

ransomware families. Appendix A indicates all the hash values of ransomware

used in our dataset.

Non-ransomware are collected from virusshare.com consists of different malware

families, it consists of 250 executables. See Appendix A for the hash values of

non-ransomware used in our dataset.

We setup two types of experimental environment (static and dynamic) each for

analysis, details of both experimental setups can be seen in Chapter 3, 3.1 and 3.2.

The features extracted from both analyses are recorded. Features count obtained

as result of static analysis is 1713 where 25 were selected after feature selection

method as explained in section 3.1.6; whereas dynamic features count is 10987 and

47 were selected at the end.

4.3 CLASSIFICATION

In our work, we have used three classifiers to differentiate between ransomware

and non-ransomware applications. These classifiers are Naive Bayes [44], Random

Forest [45] and Decision Tree(J48) [46]. Classifiers are built using data whose

category is provided as label i.e., ransomware or non-ransomware.
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Cross-validation is a statistical method of assessing and comparing machine learn-

ing algorithms. It is implemented by splitting the data into two equal portions: one

portion used to train a model and the other portion is used to test the model. One

form that used widely in cross-validation is k-fold cross-validation [58]. For every

classifier, we consider its optimal parameters. This optimal parameters produces

better classification accuracy whilst considering a k-fold cross-validation [58].In

this validation form, the data is arbitrarily divided into k equally sized folds.

Subsequently, a classifier is trained on k-1 iterations for learning purpose while the

rest of the data are used for validation purpose such that within each iteration a

different fold of the data is held out for validation. This experiment is performed

k times repeatedly, considering a different part for testing each time. After these

k experiments, the weighted average of classification accuracy indicates the ap-

propriateness of the parameters of a classifier. Finally, we select the algorithm for

classification that yields best results in terms of accuracy and whose ROC curve

(discussed in Section 3.4) have a better value.

4.4 CLASSIFIERS EVALUATION

Figure 4.1 shows the performance of classifiers on static features through ROC

curves. ROC curves are explained clearly under section 3.4. Interpretation and

comparisons of ROC curves is easy among dissimilar data sets. ROC plots True

Positive Ratio (TPR) against the False Positive Ratio (FPR) for different thresh-

olds of the data with different classification methods. Moreover, it shows that any

escalation in TPR goes along with a decrease in the FPR. AUC is used to evalu-

ate the performance of a classifier and is commonly applied for model comparison.

Optimal AUC value is 1.0 which means a good performance and classification.

Figure 4.1 shows the ROC curves for static data (i.e., strings, DLLs and PEView

info). It indicates the ROC curve values of all three classifiers i.e., RF, NB and J48

in both classes (0 for non-ransomware and 1 for ransomware). Y-axis indicates
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TPR and x-axis refers to FPR. The more the line closer to the y-axis specifies

that the classifier model produces the best results. Its clear from the Figure that

Random Forest produces ROC curve for both classes 0 and 1 as 0.7527 for static

analysis whereas NB produces the same results as Random Forest for class 1 which

is 0.7527 but shows less ROC curve for class 0 that is 0.7082.

In Figure 4.2 the detection rate for ransomware is significant as the TPR is high and

FPR is low. The figure indicates that the Area under the ROC curve (AUC) value

is 0.986 that yields good ransomware classification and detection under dynamic

analysis for both classes 0 and 1, produced by Random Forest. Whereas we have

seen that J48 produces the same result 0.9361 for both classes and NB gives not

satisfactory results which are 0.7795 for class 1 and 0.7817 for class 0.

(a) for class 0 (b) for class 1

Figure 4.1: ROC curve for Static Data with classifiers

(b) for class 0(a) for class 1

Figure 4.2: ROC curve for Dynamic Data with classifiers

Figure 4.3 shows that the AUC value of HHRC for all the three classifiers. RF

is prominent as compared to other classifiers which produce ROC curve 0.9816
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against both classes. Moreover, we can see that NB gives results as 0.791 for class

0 and 0.7879 for class 1 similar to dynamic analysis. J48 performs better produces

0.9817 for classes 0 and 1. Consequently, the AUC for the Random Forest is

prominent as compared to others produces AUC value as 0.98 that indicates the

best performance by the Random Forest classification technique. If we compare

the performance of the same classifiers on the whole data set, we find that the AUC

value of Random Forest for dynamic features is highest while for static features

this value is 0.75 which is quite low. The J48 shows nearly similar values that

indicates both classifiers perform well for ransomware identification. The Naive

Bayes has the lower AUC values comparatively.

We have performed hybrid analysis by implementing two different strategies i.e.,

HHRC and HCRC as explained in section 3.1 and 3.2. Therefore Figure 4.4 shows

the results of the performance of HCRC by employing all the three classification

algorithms in WEKA using the AUC values. The goal of this test is to compare

both the techniques. HCRC produces ROC curve value for Random Forest as

0.9873 whereas it was 0.9816 in HHRC which is not that different. J48 yields

0.934 whereas NB gives 0.78 AUC values. Both techniques come up with similar

results.

(a) for class 0 (b) for class 1

Figure 4.3: ROC curve for HHRC Data with classifiers

We have applied three different classifiers to test their performance against ran-

somware data. Figure 4.5 shows the results of different classifiers with one another

to check the selection of accurate machine learning algorithms. From the results
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(a) for class 1 (b) for class 0

Figure 4.4: ROC curve for HCRC Data with classifiers

of this experiment, we can see that the Random Forest algorithm gives an AUC

value closer to optimum value 1 on static data.

Figure 4.5: Performance of the classifiers on static data

Figure 4.6 and 4.7 shows the comparison of three classifiers on both type of hybrid

data. The comparison result shows that Random Forest performance is at its peak

producing 0.981 results as discussed above on both types of data while the J48

is second best producing AUC value 0.91 which is good prediction whereas NB

produces low results of 0.79 prediction which is a better prediction as explained in

section 3.4. When applying HCRC approach it come up with 3.08% improvement

while comparing with HHRC generating 0.987 indicating that HCRC is somehow

better approach than HHRC.
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Figure 4.6: Performance of the classifiers on HHRC data

Figure 4.7: Performance of the classifiers on HCRC data

4.5 CLASSIFICATION RESULTS

It has been clearly seen from the above mentioned section that Random Forest

seemed to be a best classifier among others in case of ransomware classification

and detection. Now come the confusion matrices for all the three classifiers that

are shown in Table 4.2, Table 4.3 and Table 4.4. These Tables show confusion

matrix for static, HHRC and HCRC analyses. Predicted classes of Random Forest

shows better results in all tables.

Based on the values of the True Positives (TP) and the Ture Negative (TN) from

above-mentioned matrices, we have calculated precision, recall and f-measure for

the static, HHRC and HCRC data respectively.

Figure 4.8 shows the effects of the dataset shuffling on the f-measure during the
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Table 4.2: Confusion Matrix for static analysis

Classifiers Predicted Class

Actual Class Non-Ransomware Ransomware

Random Forest non-ransomware 165 86

ransomware 51 199

Naive Bayes non-ransomware 99 152

ransomware 5 245

Decision Tree (J48) non-ransomware 134 117

ransomware 49 201

Table 4.3: Confusion Matrix for HHRC analysis

Classifiers Predicted Class

Actual Class Non-Ransomware Ransomware

Random Forest non-ransomware 205 5

ransomware 12 195

Naive Bayes non-ransomware 95 115

ransomware 20 187

Decision Tree (J48) non-ransomware 187 23

ransomware 15 192

training and testing. The results of the precision and recall of classification us-

ing different classifiers are given below. Results showed that NB generated 7.4%

improvement in precision as compared to RF and 15.1% improvement when com-

pared with J48 during static phase. Figure 4.8 shows the recall values of RF is

better i.e., 0.727 generating 5.8% and 8.6% improvement in recall as compared to

NB and J48. Considering the values of F-Measure that shows 10.3% and 9.3%

improvement when RF is compared against J48 and NB. The values of F-Measure

for RF, J48, and NB are 0.725, 0.663, and 0.657 respectively.
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Table 4.4: Confusion Matrix for HCRC analysis

Classifiers Predicted Class

Actual Class Non-Ransomware Ransomware

Random Forest non-ransomware 240 10

ransomware 10 240

Naive Bayes non-ransomware 115 135

ransomware 228 22

Decision Tree (J48) non-ransomware 222 28

ransomware 18 232

Considering the data of HHRC technique, the results of which are shown in Figure

4.9. It shows the results of the precision, recall, and F-measure of classification

using different classifiers. Results show that RF generated 32.7% and 5.5% im-

provement in precision as compared to NB and J48. The values of precision for

RF, NB, and J48 are 0.96, 0.723, and 0.91 respectively. Figure 4.8 shows the recall

values of RF, NB and J48 that are 0.959, 0.676, and 0.909 respectively. Recall

of RF is better among generating 41.86% and 5.5% improvement as compared to

NB and J48. Considering the values of F-Measure that shows 45.5% and 5.5%

Figure 4.8: Precision, recall and F-measure of static data
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Figure 4.9: Precision, recall and F-measure of HHRC data

Figure 4.10: Precision, recall and F-measure of HCRC data

improvement when RF is compared against J48 and NB. The values of F-Measure

for RF, J48, and NB are 0.959, 0.909, and 0.659 respectively.

Figure 4.10 shows the results of the precision, recall and F-measure on HCRC

method. Results show the similar behaviour as seen in 4.9 that the values of

precision for RF, NB, J48 are 0.96, 0.734 and 0.909 respectively. The recall values

of RF, NB and J48 that are 0.96, 0.686 and 0.908 respectively. Considering the

values of F-Measure for RF, J48 and NB are 0.96, 0.908 and 0.669 respectively.
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Figure 4.11 depicts the accuracy of all the three classifiers on the HHRC approach

which consists of two phases. The first phase include static classifier and the sec-

ond phase consists of dynamic analyzer explained in detail in section 3.1. The

results of both machine learning classifiers are shown in Figure 4.11 which indi-

cates that dynamic analyzer comes up with the highest accuracy which is 95.9%

whereas NB and J48 produce 67.63% and 90.89% respectively. J48 being the

second best. If considering the static analysis alone the result are not that sat-

isfactory producing RF as 72.65% accuracy whereas NB and J48 come up with

68.66% and 66.86%. Therefore it is evident that the static analysis alone is not

sufficient for the classification and detection of ransomware whereas the combina-

tion of static and dynamic analysis yields good accuracy with the improvement of

32% when compared the dynamic results of RF with static, whereas the overall

accuracy yields 82%. NB shows that static phase yields better results and 1.5%

reduced when the dynamic analysis is performed whereas overall accuracy reduced

to 66%. J48 come up with 34.5% improvement in accuracy when comparing the

static analysis phase with dynamic phase with the overall accuracy 79.7% of the

HHRC(combination of static and dynamic) data. The reason for reducing in over-

all accuracy results is that in static phase there might be huge possibility that

some of the non-ransomware were predicted as ransomware and therefore, they

were eliminated for further analysis. Thus reducing the overall accuracy. How-

ever, we have seen that in HCRC the accuracy improves as there is no chance of

such error.

Figure 4.12 shows the accuracy of our second approach i.e., HCRC approach ex-

plained in section 3.2 among all classifiers. It comprises of a single machine learning

analyzer. The results of all the three classifiers are shown in Figure 4.11 which

showed RF has achieved the highest accuracy of 96%, J48 being the second com-

petitor by acquiring 90.8% accuracy whereas NB showed the accuracy of 68.6%

only.

As shown in Figure 4.11 and Figure 4.12, it is quite evident that the highest

achieved accuracy is 0.96 when the classification is done using Random Forest on
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Figure 4.11: Accuracy of HHRC analysis

Figure 4.12: Accuracy of HCRC data

HCRC data which improved only 0.01% indicating that both techniques HHRC

and HCRC produces similar results as far as ransomware classification and detec-

tion are concerned. The J48 technique employed on both types of hybrid data

performs 0.90 accuracy which seems that the Decision Tree (J48) is the second

best classifier identifies ransomware accurately from both types of data sets, while

the Naive Bayes showed a low accuracy on both types of datasets.
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Figure 4.13: Percentage Improvement w.r.t time

We have further analyzed that HHRC seems to be a far better approach as com-

pared to HCRC in the context of cost. Although the results indicating the same

accuracy of 96% in classifying windows ransomware whereas the interesting factor

here is reducing cost as shown in Figure 4.13 . We have not calculated time com-

plexity but as shown in HCRC considers all the 100% applications to be executed

and analyzed thus increasing time whereas, in HHRC 11.6% time reduced by elim-

inating all those applications that were already being recognized as ransomware

in static phase 1.
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CONCLUSIONS, LIMITATION,

AND FUTURE WORK

5.1 CONCLUSION

With the proliferation of computer devices and internet ransomware threats are

seem to be increasing rapidly during the last couple of years. The damage caused

by ransomware are rising with the passage of time due to problems faced by an-

tivirus vendors in detecting new ransomware families. Ransomware and other

malwares have somehow similar instructions except ransomware contains more

threatening issues that are it locks the user system and demands ransom in re-

turn in order to have their data to be accessible. Therefore, the classification

of ransomware from other malwares that are actually not ransomware become

mandatory. In this study, we came up with the machine learning approach to

classify and detect ransomware from other non-ransomware considering a variety

of features. In this study, we consider hardware features that have not been previ-

ously considered for the ransomware classification with the combination of other

features such as API calls, Registry Keys and File Operations.

59
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This research work presents the comparative performance of different machine

learning classifiers in Windows ransomware classification and detection as well as

finding the features that play a role in ransomware classification. It has been seen

that Hardware features and the Registry Keys are the two most relevant features

for the classification and detection of ransomware from non-ransomware. We pre-

sented two types of methodology for ransomware classification and detection i.e.,

HHRC and HCRC in order to find out which hybrid technique is most suitable

for analysis. HHRC approach as the name predicts follows the static and dynamic

analysis in a hierarchy way. It comprises of two machine learning analyzers (static

and dynamic). We start our analysis with some basic static analysis and after

extracting features, these features are then given as input to machine learning

analyzer which then predicts the malware to be a ransomware or non-ransomware

on the basis of three classifiers (Random Forest, Naive Bayes and Decision Tree

(J48)). Only those malwares that are labeled as non-ransomware are further an-

alyzed to get some more dynamic features (such as hardware features, registry

keys, API calls) by machine learning dynamic analyzer. Which then predict the

executable to be ransomware or non-ransomware.

HCRC approach follows simply the combination of static and dynamic features

collectively analyzed and given as input to machine learning analyzer. Results

depict that both approaches yield similar results with the difference of 0.01%.

Our dataset consists of 500 malwares including 250 ransomware executables and

250 non-ransomware executables. Therefore, the difference could be increased as

the dataset increases.

We have used three classifiers for ransomware classification. The reason of using

these are for numerical data, choices exists are too many such as starting from

basic decision trees, Naive Bayes, SVM, logistic regression, ensemble methods

(boosting), Random forest, multi-layer perceptron etc. Whereas for categorical

data Naive Bayes, decision trees and their ensembles including Random forest,

seems to be good techniques. Our dataset was ’mixed data’ including both nu-

merical & categorical data. Therefore, one option is to go with decision trees, other
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possibilities are Naive Bayes where you model numeric attributes by a Gaussian

distribution or else Random Forest that combines bagging and random subspace.

With mixed data, choices are limited and you need to be cautious and creative

with your choices.

The comparison among results with other existing techniques was not performed

as it is not possible. The reason is our main focus was to maintain or improve

accuracy and for accuracy, the comparison is only possible if both techniques must

use an exactly same dataset with the same malware apps in the same environment

and configurations. So, basically, this is not possible as far as malware analysis

comparison is concerned. However, for future researchers, we will try to make

our dataset publicly available so that other researchers could use our data for

comparison.

Our results endorse our conclusions by achieving incredible results regarding clas-

sifiers training for ransomware classification and detection. Our trained classifier

(RF) shows an AUC value of 0.98 that indicates the accurate performance of this

classifier in ransomware classification and detection. TPR for this classifier is

high as 0.96 and FPR is low as 0.04 for HCRC approach. We observe two more

classifiers. J48 also proves to be among those who learn the ransomware patterns

successfully and shows good accuracy as compared to NB. The RF AUC values for

HHRC is 0.981 and for HCRC RF rises to 0.987. RF shows highest precision and

recall value that is 0.96 and the f-measure 0.96 respectively. Considering static

analysis alone the result are not produced satisfactory such as RF come up with

72.65% accuracy whereas NB and J48 come up with 68.66% and 66.86%. Therefore

it is evident that the static analysis alone is not sufficient for the classification and

detection of ransomware whereas the combination of static and dynamic analysis

yields good accuracy with the improvement of 24.2% when compared the results

of RF with the static analyzer. J48 shows 26.4% improvement in accuracy when

comparing the static analysis data alone with HHRC (combination of static and

dynamic) data.
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According to the results, both techniques are similar to 99%. We have concluded

that HHRC seems to be most the suitable technique for ransomware analysis and

classification. Maintaining accuracy to be 96% whereas decreasing cost to 11.6%

as compared to HCRC technique.

5.2 LIMITATION

It has been observed that Hardware Performance Counters is an emerging feature

as far as ransomware classification is concerned. Moreover, none of the existing

approaches considered Hardware Performance Counter features for the analysis

for ransomware. Therefore, we have experimented and successfully grasp the top

features to be from Hardware Performance Counters that is cache-misses. There

exists a limitation for it as the attackers tried to alter in code in such a way that

affects its performance while the behavior of the program remains the same will

reduce accuracy.

5.3 FUTURE WORK

Application of machine learning algorithms has shown very promising results in

order to make advancement in this field. As a future work, we plan to validate our

framework on a large dataset. We have also faced the problem during sandbox

execution as some applications fail to run or missing some shared libraries. Some

of the ransomware even bypasses the sandbox and show attacking behavior which

even damages our system too. Some ransomware shows silent behavior after de-

tecting the controlled environment. Therefore, more research is needed on code

coverage of executed applications during dynamic analysis. We can even train

a classifier in future which can detect the ransomware application and classifies

them into families. We can dig more into the network statistics, TCP packets
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etc, while tracking down the dynamic properties of more hardware features for the

applications.
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DATASET USED

Table A.1: List of all ransomware hash value

No MD5 No MD5

1 12be6e7241d2503f31fae01046e88d68 126 6d39e2fabd738f6e5242b31d4743a152

2 aea8ab12edf294ddb2804d6618fdd247 127 0a164f674221a6a23b86a73bea05c913

3 d5d010f8b2f145399a9638f457ff3990 128 ed74b74d02b91b3fbfddc94484f031e0

4 d1510b299e8570afd352d20d516f6f48 129 f36443853cc774237e1f673ec8e3df0e

5 ff189061d35cff903af5d25858d6c484 130 fa1d3d1ba53491ed9431a1f4fe50d5bc

6 886b02878836e8bc1e06ccfe73cf1d5b 131 18294ea0655a05b6f1cdd93f3dfad0b9

7 f6fa4051156b35d3a8c9261cb0128d70 132 deec2a79f1cfbdc8dced0f68ec908a28

8 4d36c89ec1915d018b47fc1ddd685234 133 3769d77331279bd1dd5baa8e08495dea

9 3f82790d2d8ad5ddd17b11c911e4352d 134 53df46eca1aa6ce88f08bf660e597494

10 f78046c221d06596a47bbeb4288defb0 135 1abff57e05629475c1a4fa86141f75cf

11 4b68739e3e5607de02f8ef72f3cb26bc 136 93c3d81f9c7f0c69989c8b41e04ce471

12 a864077a8b7d702f2db8dc868049672d 137 c307986eda3b0319e8bdecb3010f841f

13 74b23514e6e5199c3ddd22361128f9bc 138 7edc49ef66f45353e8dc163409dbbad6

14 9d9de70e5d58094bd34c53ff52b18290 139 bcc312a0a0c7dc7ec27f25d4dbf57bac

15 9de699ef09f54e3fdd84cf7c2750bfee 140 f1e1e85fbb64962b57d11a2a76c05410

16 f08577c753c73a14eeb958451635a1c4 141 12666b5054cc0cb62cf758736340c1bc

17 d3fc3d0ad612ee6f43df58f01d7323ce 142 c63dd21d13100728828b2937482e017c

64



Appendix A 65

18 f8da21ba71ebf3727971bce9d9724c3e 143 f542094e530fb3bc66efcdb53461499a

19 858adddf40ed251174a1ccfa4b880090 144 6b40feb191cb174090f6bb36724f83e2

20 fdd4fbfc35e05da4b77deb9cdae89390 145 f2efea2a7783f1912d83d6dc71f08c56

21 e28ea9135eb096977e734a506a486aa0 146 29160abb461b01e29098ed3cd8d474e6

22 f73ea1b038efff72397c749d12fbcda0 147 3da6a0168ec0a7a2c55bd627cc76b830

23 920256744075b2d2cffcfc5f62c7f2a9 148 f28546e6e56bb5e14d8585c10c449d72

24 70975d8bdeeb40cb55044f569ddb585d 149 d3552bc70d3345c88f462e270459c953

25 386b47777d8366e59479528376841e28 150 de8225722cbfec609b923bd6b59492e8

26 fe778ea756169a05d3e7ae72100b1978 151 34801b671c5f2a28338570c4c8677e8f

27 2a2b0c8f4a6e765b810a81ef7d2449fd 152 f6b6aca1654ef18fcbe6855217971f50

28 f3d7df9f1882e9f753b19b89aaad6215 153 d56bf4a6522eb58a245810abab8419b3

29 96e5a9de91aa21b8d59e5680bc8e98a0 154 2a59d4ed30a0353f69cce57ad83831ea

30 f18c4cc41fa26858c7ff4296d0049f80 155 c7c3a47ece2caab5e30c351a9fc0b885

31 5abef46a05048e9be91f60b1e8763fc0 156 b594b2e759271166e40383ec952dcce1

32 f8330a82b7b7f6f7f8f249b650d95a97 157 a97e0f078d1bd42e0c004598e01d942e

33 2bafc99b1f149a88044963b577385f3b 158 9b1da810487cdcb458d46f394f561fdb

34 08401f7f7393048d0ac7716abc3a0648 159 2e922ffc0c31a82da57bf3db10b682d6

35 ef466d9b0cebfcbae016649d34a161b6 160 eac1ea433b69fc5b7479f9ebf2804c15

36 3478e753233c4163dc1b0b95133d4771 161 f58e3e28a70e188ae707d4e6020318f0

37 cf16ca22fd93735ac9661cb7f9c2fb80 162 69d0a16ad7d955771129bff188b79b83

38 c237cdb1106ed2bbe63fa122273e1d80 163 f6777c1796c840fba3df48e36c3a41b4

39 af7c40ca4ec4665ed819a9eb6409b587 164 f77b5209cb1ae00fc1f5c598df243030

40 537f3a22bb83b8643c0f676887d49f57 165 7ffb1799f23dc59c536ee492f97c4c92

41 fff891cc1fded5c7e8625b21606bdbac 166 5f0997ee267dec418efdb61112a09f65

42 fe26327c3e175af16967ee690a9671d0 167 fea1608830f74a2fb887115b9cf38e80

43 f4f1b178053078c8ed00272a655dc950 168 08cfa6421607a8405cbb20ac4e2864eb

44 b38995b27c6bcc117fc74e452b65b2c1 169 bd5eed8869652cb5bc0f3e363b987b70

45 b552c103224ce78bd1f5e5962445dd80 170 27cfd891abe1e029466e73bfee2cfc5b

46 9e9db0e6aeeb1ef625d0b92739fb2a93 171 4256b43110d9bd870360824242288aab

47 7cd68627b836ac1c5e2bbffc178b05e2 172 a1b111bd003779ccc4e6c6fe4713e92b
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48 7d09214052f036749a287e6dd8ad8cb0 173 bf70eeddab5404a33cfbd39ced8c5f41

49 5c38c88d1de4970579bb155996cfb550 174 65e5113f77b35621d12675447bcd52ef

50 f3b620bdf93a054b8b60c30740999577 175 f67504657cce5ba27f12e026d3a73559

51 371d47e47c1ff7170f60aba5af05c516 176 af5f92145423675d01f09396426d6847

52 fdb15408a22b5f4396f549d68ad126e0 177 451d524f2b5353246c7eeea503e752b4

53 c2438a77e701fab954f516df8be85e6e 178 b38bad8e43b4deb6817a1cb4570b4bf0

54 18da21337a68b2edf0abedc4a6cb6b0c 179 efd36aad32b3a16271c1f13e326a1bf9

55 b268ebf7a6891026d9445ef4fd9296de 180 f570ca1031fc7d2b518271b43e6753de

56 e8b948f5bbcce8e8545c45174c7fd500 181 1eceeb4901686cad6979f3db0574b4ea

57 74ee23f11d7964ab2328341eda4b44b1 182 d4dfc17c79bf9e45ea169a7dfb8731a0

58 13e1538d403a3618db92ad0700f08b5f 183 be611e896251a55fb88a8b38c987bb60

59 1d1ba87f51e85b599f709409265419a8 184 7ef376e81b51abddc7b1598681e9cdde

60 c2a42a0dd7785ce0cc783f17f4fbe355 185 1dbf99bb878f7cad04ba363045556071

61 f59839791993b0db269cb15d57a42dc0 186 72ce1b0c54c45f1424dbd9954c7431f2

62 f9f1d58b27b7032f2c0006d104232560 187 fe8befdddcc9a3ce820a761d55158235

63 7ddef77c68d6a0acc12531a58d3f3743 188 a5fff257b81ea19b3509576e552d0b27

64 e91b9cf9e93f58d9d7d8516a3468093b 189 67ab8dd615923a5e91e33f8a284882b4

65 f671addab4fdf223053d241d59fac7a0 190 d160e20c6caead34681a07cf19299e5a

66 f006e2c76a4dfe750c08130826d0eb34 191 f609cdd24ef60e491e2cd3970fc58dc0

67 a4c1452050618d1cd5c86c2bb0482062 192 2f7efd6ba29680659d2aa0a1c246a56b

68 f7c997f81d95663bc8f57c94f83946b0 193 f2ed2531d6d8e423d268b5a051a75d40

69 6d0d13f4fb5ccc57a7bee6195ff41e99 194 b3d7fdd5a521e434e2637b57209babb3

70 f5bd93c14ce6d72bc1adae10827ed220 195 56f0c40f508f8c1321bd984c3b598e53

71 80b8411b1b2b94af31f9abebc45e12fd 196 ff8fd0f6c996b58c9a3bfeee89b09c10

72 c1a2eef9cf84ebdbf9e3580796e11c8c 197 cefcdd32223840c39e98b82ea1e6a05f

73 f55a4cfc8125cf927f9b632f026cf3e0 198 d8a33a1bd41cfa5408be35cc32a2d79d

74 ef978c66dbd14bc6af14edfbaab08780 199 c4d9811ebe4a6af8037c7eef8aa585aa

75 af9175cb56e41868c13c1ec836b09022 200 bd6316d3e1e0e20ea312ce34c0083265

76 8b0efd1759f66420392559c2c506cd6f 201 6e91bad26a5b5a0f30650a7c515066b3

77 fb6539238a7cd432ef3c01f3976dc101 202 7744b8991723e10df3796e983a49dc1e
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78 54c10c2f741ce18c6596e73c4fd083db 203 1d8e332ad2ae1877c94bb2e98e580c90

79 f7539ee27967b19a234342a13d8541a0 204 055eb2a4df678c114d42706d3ce97af7

80 7574bcabb68d64a74f6948938a67cae1 205 bf28a351214372f5ffd4e4011601a8e4

81 c198fadeff984c2465f2e1ebedf4c601 206 6a60a270addbfad002914e5a5bc5ef0e

82 8ab4abdd27bb1e83740ebd29b701a96e 207 e26da8bf616eacf2f9bc6f20d5fc7710

83 fca9c2649ed7e18535bf4c745e16be50 208 cc854611017247dc151b339c2094e0e3

84 c7ef1ff53e4250e2cecda37f1cde3a4a 209 d9f39c323183524f3772072d5e3fa971

85 c962955075b09c3ca181067c248141b0 210 78b3c1ffbb671fbb0c03e1de152bc2b4

86 b5ea1d90bbe8304a6234633478e9fd0d 211 dfb7d9770e1440d26e0e62fe968fda3b

87 4daabf35a0b606a5c807564e1c5293f6 212 ed3aa0dae49ef9bea25539a10c5ae770

88 15498158598632df42dd416de292d24e 213 11ff8a8e9a643deff1dcf58e7e2fdf20

89 fcc93a5a4d010b2de2e8cebca6599f20 214 bab69fc3ad499f871e74a4fad5238830

90 2ba4903ebbf34d43f65c88d00514dadb 215 fce913371f90e5fe1464f04622903720

91 2104c98cf906bb7d3a88b7e471e8e316 216 414146ca9ee9a3b18eff07a16e34a9fb

92 0b54a6f62c6b7150d06ad876e81b21cc 217 76874ed83c4942f5a11937f53533a6c7

93 f378010e63a5cfcf9db96b819ba754e7 218 72eeb1e5d2ee146b51e3919d7330ca20

94 b223ef2e609b7b4a8138bd4c914e52d0 219 7658d91525d791f9516db5f0d30225e4

95 088ee14f59604a5fad42edd1d3b9467e 220 07ce95aeaab7fb4b6630ac576a98b883

96 db3341835fadd9f3edadc9cd19bb36cd 221 b296dbc7fecc0c4b65335236644e61b0

97 1ec80153e3f7c7e27ce8d54e8cc5303e 222 f21f2d7910bc222632dc8ea72dcf8950

98 6374833fa3cfdee0c008a01cfeac98c0 223 f7f2dbe66b60e9a576d05e05e7f51ab3

99 b2c47014b08b78bc7e350f07596273e0 224 ebf114d7dafc3c9a8df9b94b0a7d8560

100 aa6529fb7f26c3370c60181b116f773c 225 ef764bbd3dbee288df85b403865f745e

101 1ffc020d1eb24b96ff1b54d025b7335c 226 f8f26e510136e11d0ed1cec115e3eac0

102 f7ac15f0065ebc1c4e7ceb23bfb71975 227 f569adb9bed09b2dd7d51d9e007e45c2

103 d359c319165caa9dfbe6b78c83b58d60 228 f4b93dae71a92326864eb72a2a27e951

104 c1b839fde0e900bc9d6b0e1b1b2351a6 229 087d86235891edbcc02eab6880143aa5

105 0514927422bcc62e5d22e1e8c6da5f43 230 e51a1233a965d777bc9ba115db87ca10

106 4706adc3668da0e911f888d5d7acbe7d 231 749ed7635492a5ca669798564d8b0350

107 fe5c6b35be61fe6b26c66c1f77416f05 232 43ce7a42d275d1351de591b3b5d2661d
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108 db8b0d2fe138e4f32440cacebb30c2ee 233 5749f981b88d2ab6644defcde96652cc

109 fc1d377b1213b008c8e6b4cbb2092551 234 fbf9833409e39b8ac4301eeaaae9c960

110 adfc311d80a2cedb63ef76c1c80e39a3 235 b689050b89ce00dd84229aae23e28d10

111 fd36eee0e9b687219cfefd4a2f1a5a0c 236 f492b061612f1fc55fc87984ec04f800

112 e7c688ecc01980b2824e308c2f80c0c0 237 2653b0e170899c2b5eab42d5c2f618c3

113 614d0780b8e631a6bf419a8209ab5c93 238 bf98ed9ba7dd102fc9dd7cdc57810203

114 40d54310207ce89061bad88550242264 239 d908af88f6cdfc9e7ff0776f08c980fc

115 018cb8a80fb37b5bc93577be1a4537f2 240 daf61f850494910d5dc608ebfee016fc

116 dee8749f50aa8a4bc06154add4a71d70 241 f516554acccb66c653384b8915ba6240

117 3398462231e58f8855c289cdc319f771 242 f05558ca4e5ee463a6a1e0cd375a9d27

118 241c6ac41922a71605e02840dd80e2f0 243 142f4b80695d9a7550c14ab3585b91e5

119 771c27201a8bdb2e3adb45f8abbdf118 244 e1dc0f416e6f924ebfc446e8580a1b30

120 f95eb0adbf1b5ff68b34de2170b16bc0 245 57619746d0e7ac3c17668c5385c6444e

121 35d60d43cc9e8261e92b77ce5f3e93cc 246 ae5b5fd7f9920248471de0b3a4df8ed9

122 e852c78346f4453a6e26ead69be8b0f0 247 cf6a507d19eb57e75f1f94f363978ac5

123 9f2bba8eff09a5a629aeefa3846a080d 248 235bf9e1da0e3db10d63c00d6a405182

124 a3b240186ef2c7c470aaec5b25ebfffb 249 ab201e3e84433991dfa2536271aff49c

125 2e2d9a9e4f1ba67bb7d6acccd2cc7cdb 250 0e3afd506ecb079ee78ef2d754e6faa0
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Table B.1: Feature Description of Top ranked Static Feature

Feature Name Description

SizeofStackReverse The amount of virtual memory to reserve for the initial
thread’s stack.

MajorOperatingSytem
Version

The minimum version of the operating system required
to use this executable. This field is somewhat ambiguous
since the subsystem fields (a few fields later) appear to
serve a similar purpose.

Subsystem The type of subsystem that this executable uses for its
user interface e.g., 2 for windows GUI

Checksum A CRC checksum of the file.

AddressOfEntryPoint The address where the loader will begin execution.

NoOfSections The Section table contains information about each section
present e.g., code section, data section

ExecShell: warning: er-
ror (”%s”: file:”%s”
params:”%s”)=%d

String

mscoree.dll If compile code as an .exe assembly, the runtime is started
automatically by mscoree.dll.

DecryptFileA Function requires exclusive access to the file being de-
crypted, and will fail if another process is using the file.

CryptDeriveKey Function generates cryptographic session keysderived
from a base data value. This function guarantees that
when the same cryptographic service provider (CSP) and
algorithms are used, the keys generated from the same
base data are identical. The base data can be a password
or any other user data.
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Table B.2: Feature Description of Top ranked Dynamic Features

Feature Name Description

cachemisses Cache misses is a state of not getting data
which is being processed by a component
or application that is not found in the
cache.

branches A branch is an instruction in a computer
program that can cause a computer to
begin executing a different instruction se-
quence and thus deviate from its default
behaviour of executing instructions in or-
der wise

instructionsPerCycle The average number of instructions exe-
cuted for each clock cycle

pageFaults pageFaults occurs when a programs vir-
tual content has to be copied to the phys-
ical memory.

REG.READ.HKEY CURRENT USER.
Software.Microsoft.Windows.Current
Version.Policies. Explorer.

Registry Key

REG.OPENED.HKEY
LOCAL MACHINE.SOFTWARE.

Microsoft.Windows.CurrentVersion.
ShellCompatibility.Objects.

Registry Key

CreateDirectoryW API Calls

GetVolumePathNamesForVolumeNameW API Calls

REG.OPENED.HKEY CURRENT
USER.Software.Microsoft.Windows.

CurrentVersion.Policies.

Registry Key

REG.OPENED.HKEY CLASSES
ROOT .CLSID..20D04FE0.3AEA.1069.A2D8.08002B30309D

Registry Key
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